Breadth First Search (BFS)
Level Order Traversal
n
--> Number of nodes
Time Complexity:
O(n)
Space Complexity:
O(n)
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
// Stores the result
List<List<Integer>> result = new ArrayList<>();
// Edge caase
if (root == null) {
return result;
}
// Store the nodes to be processed
Deque<TreeNode> deque = new LinkedList<>();
deque.offer(root);
while (!deque.isEmpty()) {
// Get the number of elements to be processed at the current level
int levelSize = deque.size();
// Intermediate result for current level
List<Integer> currentLevel = new ArrayList<>();
// Iterate through deque
for (int i = 0; i < levelSize; i++) {
TreeNode node = deque.poll();
currentLevel.add(node.val);
if (node.left != null) {
deque.offer(node.left);
}
if (node.right != null) {
deque.offer(node.right);
}
}
result.add(currentLevel);
}
return result;
}
}
Last updated
Was this helpful?